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ABSTRACT

Microgrids, localized electrical grids that can operate
independently or connected to the main power system,
are emerging as critical infrastructure for grid resilience
and renewable energy integration. However, high re-
newable penetration creates new challenges: these sys-
tems must regulate frequency and power under fast,
nonlinear dynamics and mode switches, making reliable,
real-time models essential for control and planning.
Classical differential-algebraic simulators capture de-
tailed physics but suffer computational bottlenecks and
parameter sensitivity, while purely black-box learners
achieve fast inference but violate physical constraints
and fail under distribution shift. Scientific Machine
Learning addresses this trade-off by fusing mechanistic
structure with learnable components and calibrated
uncertainty. We address this trade-off by comparing
two neural ODE approaches: Universal Differential
Equations that learn residual fg(Pgen) inside mechanis-
tic models, and Bayesian Neural ODEs that treat all
dynamics probabilistically. For calibration’s compar-
ison, we apply post-hoc calibration to both methods:
global affine mapping with conformal prediction for
UDEs, and variance scaling for BNODEs. On 10 held-
out scenarios, UDEs achieve physics-comparable ac-
curacy while producing interpretable quintic residuals
(R? = 0.9998). BNODEs provide principled uncer-
tainty quantification with calibration improving 90%
coverage from 0.866 to 0.893. These calibrated ap-
proaches, maintaining millisecond inference, offer prac-
tical alternatives to black-box methods, with accuracy
and interpretability for microgrid control.

1 INTRODUCTION

Renewable-rich microgrids integrate inverter-based dis-
tributed energy resources (DERs) to enhance resilience
and sustainability, but their dynamics pose fundamen-

tal modeling challenges beyond traditional power sys-
tem analysis [9, 23, 36]. Unlike synchronous generators
with well-characterized swing dynamics, inverter-based
resources exhibit fast switching behaviors, complex con-
trol interactions, and mode-dependent responses that
defy conventional DAE-based models [12, 21, 14]. Grid-
forming inverters introduce additional nonlinearities
through droop control mechanisms that dynamically
couple active power with frequency and reactive power
with voltage [27, 34]. Modern microgrid operation
requires models capturing these dynamics across mul-
tiple temporal scales while remaining computationally
tractable for real-time control and extrapolable beyond
training conditions [28].

Traditional approaches face a fundamental dilemma.
High-fidelity DAE simulators capture detailed device
physics but require extensive parameter identification,
exhibit computational bottlenecks, and often lack criti-
cal parameters in practical deployments [27, 8]. Numer-
ical challenges become acute with stiff systems exhibit-
ing multiple time scales, requiring specialized methods
for stable integration [13, 4]. Conversely, purely data-
driven methods efficiently fit observed behaviors but
typically ignore physical constraints, leading to con-
servation law violations and poor extrapolation [16,
6].

PINNs embed differential equations as soft con-
straints in training objectives [33, 16], but recent anal-
ysis reveals systematic failure modes where PINNs
converge to trivial solutions, particularly with sparse
data or competing loss terms [19, 41, 42]. These chal-
lenges intensify for stiff differential equations common
in power systems, where PINNs struggle with stability
and convergence [15, 19]. Spectral bias causes PINNs
to favor smooth solutions even when true dynamics
contain sharp transients essential for power system
modeling [32, 38, 40, 37].

Neural ODEs represent continuous-time dynamics,
enabling irregular sampling, memory-efficient training



via adjoint methods, and natural constraint incorpora-
tion [5, 17]. Universal Differential Equations address
structural limitations by embedding neural networks
within mechanistic models, preserving known physics
while learning unknown components [31]. This hybrid
approach maintains interpretability while capturing
complex nonlinear effects [2]. Recent advances in stiff
ODE solvers make UDEs practical for power systems
with vastly different time scales [29, 30]. Bayesian
Neural ODEs extend this framework with probability
distributions over parameters, enabling principled un-
certainty quantification that distinguishes epistemic
from aleatoric uncertainty [7]. The Bayesian frame-
work naturally accommodates parameter uncertainty
and provides principled model selection [10].

Uncertainty estimates must be carefully calibrated
to achieve nominal coverage rates [20, 11]. Recent ad-
vances demonstrate that calibration is especially criti-
cal for extrapolation in operator learning [22, 25, 26].
Proper scoring rules provide frameworks for evaluating
probabilistic forecasts [11, 3]. Conformal prediction
offers distribution-free uncertainty with finite-sample
guarantees, though physics-grounded approaches often
provide better-calibrated estimates when extrapolating
[35, 1, 26, 39]. Operator learning methods including
FNOs and DeepONets provide alternative paradigms
for learning solution operators rather than individ-
ual instances [22, 25, 18], offering faster inference for
repeated evaluations but often exhibiting poor uncer-
tainty calibration under distribution shift [26, 24].

This comparison addresses a critical gap in scien-
tific ML for power systems. While PINNs have been
explored extensively [33, 16], their failure modes with
stiff systems [15, 19] make them unsuitable for fast-
timescale microgrid dynamics. Our work demonstrates
that hybrid approaches can match physics-based ac-
curacy while adding interpretability (UDEs) or cal-
ibrated uncertainty (BNODESs), providing practical
alternatives for real-time control and planning under
renewable uncertainty.

We make the following contributions: (1) First
systematic comparison of UDEs versus BNODESs on
identical dynamical systems, with evaluation spanning
point accuracy, probabilistic calibration, symbolic inter-
pretability, and computational efficiency; (2) Demon-
stration that UDEs preserve physics-comparable accu-
racy while enabling post-hoc symbolic distillation—a
quintic in Pye, with R? = 0.9998 extracted from 11 neu-
ral parameters; (3) Characterization of computational
efficiency showing UDEs achieve 2.8 x faster training
than BNODESs on our dataset due to MCMC inference
overhead; (4) Deployment guidance providing practi-
cal method selection framework based on operational

Table 1: Model variables and parameters (per-unit unless
noted).

Symbol Description Range/Units
1 Storage state-of-charge [0,1]

T2 Frequency/power deviation [—1,1]

Tin /Mous Charge/discharge efficiency [0. 85 0.95]

@ Damping coefficient [0.1,0.5]

B Power—frequency coupling  [0.8,1.2]

5y Storage—grid coupling [0.025,0.049]
U Control input 0 (open-loop)
d(t) Disturbance/self-discharge  time-varying
Pgen/Pioaa Generation/load power [0,1]
requirements.

2 METHODS

2.1 Two-State Microgrid Model

We adopt a reduced-order model that captures essen-
tial microgrid dynamics while remaining tractable for
systematic analysis. The model represents storage-
frequency interactions inspired by droop control and
swing dynamics:

d.fL'l 1

— = uKusoy — —— - u-Wp,eoy —d(t),  [28,0

dt n {u>0} Tont {u<0} () [ ]
(1)

d

% = —axy+ B+ Pyon — B+ Poaa +ya1,  [34, 12 21]

(2)
where variables and parameters are defined in Table
We evaluate open-loop response with v = 0 throughout;
the control term remains in Eq. for generality.

This model captures key phenomena: storage dy-
namics with efficiency losses (Eq. [l)) and frequency-
power coupling with damping and storage interaction
(Eq. . While simplified, it exhibits essential microgrid
characteristics including energy conservation, stabil-
ity properties, and nonlinear responses that challenge
purely data-driven approaches.

2.2 Universal Differential Equation Approach

The UDE framework preserves essential physical struc-
ture by embedding neural components within mecha-
nistic models. We preserve the well-understood storage
dynamics (Eq. 1) while learning corrections to uncer-
tain generation-frequency coupling:

dml 1
W = TMin " U 'Hé{u>0} - Nout U 'Hé{u<0} - d(t)a (3)
dza

= —ars + fﬁ( gen) 6 . ]Dload + YT1- (4)

dt



Table 2: UDE hyperparameter search space and optimal
configuration, searching performed over 5,760 configura-
tions.

Hyperparameter ~ Search Space Optimal
Hidden width {3,4, 5,6, 8,10} 3

L2 reg. X {107%,107°, 107%, 5x107*, 1072, 5x10~*} 10~°
Learning rate {1073, 5x1072, 1072, 5x10~?} 1073
ODE solver reltol  {107*, 107%, 1075, 1077} 1077
Random seeds {0, 1, ..., 9} 7

Storage dynamics are well-characterized by con-
servation laws, while generation-frequency coupling
involves complex inverter dynamics difficult to model
precisely. By learning only the uncertain coupling
term BPsen — fo(Peen), the UDE maintains physical
interpretability while capturing missing nonlinearities.

2.2.1 Neural architecture and training

The residual function fg(Pyen) is a single-hidden-layer
tanh MLP with linear readout:

fo(Paen) = Wy tanh(Wy Pyey, +b1) + b2, (5)
where W1,b;,ws € R? and by € R. Together with
the physics parameter (§, this yields approximately 11
trainable parameters. We selected width-3 through
systematic validation: widths 4-6 achieved similar
RMSE (0.247-0.249) but degraded symbolic extrac-
tion fidelity (R? dropping to 0.985-0.992 for quintic
fits), while width-10 introduced overfitting (validation
loss increased 15% despite lower training loss). We
validated this 1D design by comparing against a five-
input variant r(Pgen, Pioad, 1, T2, t); results were qual-
itatively similar (ARMSE < 0.003), confirming that
generation-frequency coupling is primarily univariate.
The reported quintic represents the main effect in Pyen,
with interaction terms empirically small (Fig. (7).

Table [2[ presents the hyperparameter search space
and optimal configuration identified through systematic
grid search with validation-based early stopping.

We minimize a frequency-focused composite loss:
L(#) = RMSE,, +0.2-RMSE,, +0.1-MAPE,, +\||0]|3,

(6)
prioritizing frequency accuracy (weight 1.0) over stor-
age (0.2) and relative errors (0.1), reflecting the opera-
tional importance of frequency stability. Regularization
applies only to neural network parameters.

2.3 Bayesian Neural ODE Approach

BNODEs place probability distributions over neural
ODE parameters, enabling principled uncertainty prop-
agation. The BNODE replaces both equation compo-

Algorithm 1 UDE Training Pipeline

Require: Training data Dirain, validation data Dyar
Require: Hyperparameter space as described in Table
Ensure: Trained UDE model fo= with optimal hyperpa-
rameters
1: Initialize: Best loss L* <+ oo, best 0% +
2: for each config (w, A, n, reltol, s) in space do
3:  Initialize: 6 ~ N(0,0.1%T) with seed s

4:  patience < 0, epoch < 0

5. while epoch < 1000 and patience < 50 do

6: Solve ODE with tolerance reltol

7 Compute loss: L = RMSE,, +0.2-RMSE,, +0.1-

MAPE,, + \||9||3

8: Update: 6 <+ 8 — VL using L-BFGS*

9: if epoch mod 5 = 0 then
10: Compute validation loss Ly,1; update patience

if Lyal improves

11: end if
12: epoch < epoch + 1

13: end while
14: if L < L™ then

15: L*«+ L, 0"« 0
16:  end if
17: end for

18: Return: Optimal model fy=
19: Empirical scaling: O(nlogn) per epoch; 5,760 configs

nents with probabilistic neural networks:

dx
S = o w2, d), @
dx
aTt2 = fo, (21, 22, Pgen; Pload) (8)

where 6, and 65 are neural network parameters with
Bayesian treatment. Each fy is a one-hidden-layer
tanh MLP (width 5, 4 inputs) whose output is the
sum of hidden activations (no explicit output layer);
inputs are [z1,x9,u,d] for the first equation and
[€1, %2, Pyen, Ploaa) for the second. We prototyped stan-
dard linear readouts and stiff solvers (Rosenbrock23);
outcomes were qualitatively similar.

The posterior distribution over parameters given
observed trajectories y is:

p(0ly) < p(ylx,0)p(0). 9)

We perform inference using MCMC with the No-U-
Turn Sampler (NUTS) [Algorithm [2]. Posterior predic-
tive draws are simulated with Tsit5 (reltol = abstol =
10~%); exogenous signals are linearly interpolated. We
use K = 100 posterior draws for evaluation.

2.4 Post-Hoc Calibration

We apply post-hoc calibration to both methods to
ensure uncertainty estimates achieve nominal coverage
on held-out data. All coverages are computed pointwise
over test timestamps for xo unless noted otherwise.



Algorithm 2 Inference

(MCMC/NUTS)

Require: Training data D = {(u;, )},
Require: C' = 4 chains, S = 1000 samples, W = 100
warmup
Ensure: Posterior samples {§(©%) (=)}
1: Define priors: § ~ A/(0,0.1°T); o ~ TruncNormal(p =
0.05,0 = 0.02,a = 0.01,b = 0.2)
2: Define likelihood: p(ulf,0) = Hf\;l StudentT(v =
3,1 = fo(ti), o)

BNODE Bayesian

3: for c=1to C do

4:  TInitialize: 6% ~ p(0), o> ~ p(o)

5 fors=1to W+ S do

6: NUTS step: build tree until U-turn or max depth
10

7 if s < W then

8: Adapt step size and mass matrix

9: end if

10: Solve  ODE: du = Fotes (0, t)
(Tsith/ RosenbrockQSg)

11: Compute £(4%) = log p(u]f>*), o))

12: if ODE solve fails then

13: 009+ —0

14: end if

15:  end for

16: end for

17: Check diagnostics: R < 1.05, ESS > 400
18: Return: posterior samples after warmup
19: Empirical scaling: O(n?) per MCMC iteration

BNODE calibration via variance scaling. We
compute posterior-predictive draws on validation and
test sets. On validation, we fit a single global variance
scale a by minimizing squared error between nominal
and empirical coverage at 50% and 90% levels, using
Gaussian-summary statistics (per-time mean g and
standard deviation s across draws). We search « over
80 evenly-spaced values in [0.50,2.00], computing cov-
erage from quantiles 2975 = ®71(0.75) ~ 0.674 and
20.05 = ®71(0.95) ~ 1.645 for intervals p; + zas;. The
optimal « is then applied to test data. On our split,
grid search selected o = 0.5; other seeds sometimes
yield a = 0.9 with similar trade-offs.

UDE calibration via affine correction. UDE cal-
ibration applies a global affine map ¢ = afj + b fit via
closed-form OLS on validation predictions. Uncertainty
intervals use split-conformal prediction: with valida-
tion residuals r; = |y; — 94|, we form bands [§' £ ¢a)
where ¢, is the (1 — a) quantile of {r;}. On test, this
calibration improves RMSE from 1.131 to 0.777 and
R? from —0.175 to 0.445, with coverage of 65.3% at
50% nominal and 86.8% at 90% nominal (mean widths
1.463/2.279).

Algorithm 3 BNODE Posterior Calibration

Require: Posterior samples {9(3),0(3)}35:1 (S = 100)
Require: Validation data Dy, test data Dyest
Ensure: Calibrated predictive distributions with o
1: Generate Validation Predictions:
2: for : =1 to Nya do

3 for s=1to S do

4: a{*) < ODESolve(f, (), t:)

5: end for
6
7
8

poe 00,00 s o [ T 0 - w2
: end for
: Search « over 80 evenly-spaced values in [0.50, 2.00]
minimizing
9: (COV50 — 0.5)2 + (COVQO — 0.9)2
10: Use 20.75 =P (0.75) ~0.674, 20.905 =D 1(0.95) ~1.645
for bands u; £ zas;
11: Apply to Test: compute puj;,s; similarly; evaluate
with o*

Algorithm 4 UDE Conformal Calibration

Require: Trained UDE fy«, validation Dyai, test Diest
Ensure: Calibrated predictions with conformal intervals
1: Validation: @; < ODESolve(fo+,t:); 9 = 0;[2]
2: Affine OLS: a = —E(yi_y’)(yi_y) ,
max() (5:—9)2,¢)
3: where € &~ 2.22 x 107'°
4: Residuals: r; = |y; — (afi +b)|; g = Quantile({r;},1—
a)
5: Test: §; = a1;[2] + b; intervals §; & ga

3 EXPERIMENTS AND RESULTS

b=y—aj

3.1 Experimental Setup

We evaluate both methods using stratified scenario gen-
eration across diverse microgrid operating conditions.
The dataset comprises 70 scenarios split by trajecto-
ries: 50 training (10,050 points), 10 validation (2,010
points), and 10 test (2,010 points), corresponding to
a 71.4%/14.3%/14.3% split. Each scenario represents
a unique operating regime with zero temporal leak-
age (no trajectory overlap). Parameter space coverage
analysis reveals mean pairwise distance of 1.088 in
normalized 5D space. Statistical comparison confirms
distributional similarity: y? = 2.14 (p = 0.34).

All test scenarios lie strictly within training pa-
rameter ranges across all five parameters (Figure ||
confirms interpolation regime). Training scenarios ex-
hibit 15x frequency volatility variation (0.088-1.315
p-u.); test scenarios span 8x variation (0.128-1.047
p.u.). All experiments were conducted on a MacBook
Pro (Apple M2, 8 GB RAM) running macOS. The
UDE and BNODE implementations use Julia 1.9.3
with DifferentialEquations.jl 7.8.0 for ODE solving and
Turing.jl for Bayesian inference (NUTS sampler with 4



Parameter Space Coverage: Test Within Training Distribution
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(a) 2D projection of a vs B parameters showing test scenarios
(red triangles) lie within the convex hull of training data (blue
circles), confirming interpolation regime.
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(b) Range comparison across all five parameters demonstrating
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olation required.

Figure 1: Parameter space coverage validation showing
test scenarios lie within training distribution.

parallel MCMC chains).

3.2 Point Accuracy and Statistical Equivalence

Table [3] compares UDE and physics baseline per-
formance on 10 held-out test scenarios (2,010
time points). Throughout our analysis, we define
A = UDE — Physics to quantify performance differ-
ences. The physics baseline—comprising Eqs. f
with BPsen and no learned corrections—achieves
RMSE of 0.2520 on the operationally critical fre-
quency variable zo. The UDE achieves comparable
performance (RMSE = 0.2475) with identical storage
accuracy (x1).

Figure |2| demonstrates strong per-scenario corre-
lation (r = 0.955, p < 0.001) with minimal system-
atic bias (A = —0.004). Bootstrap analysis (1,000
resamples) yields a 95% confidence interval of [-0.039,

Table 3: Performance metrics on test set (10 scenarios,
2,010 points). Bootstrap 95% CI for RMSE difference con-
tains zero, indicating no statistically significant difference.

Model RMSE z; RMSEz; R?z; R?2zs MAEz;  MAE 2
Physics 0.106 0.2520 0988 0.780  0.081 0.211
UDE 0.106 0.2475 0988 0.764  0.081 0.208
BNODE' — — — — — —

TBNODE optimized for calibrated uncertainty. Point metrics in Appendix ilil

Performance Comparison: UDE vs Physics Baseline

06 =-0.004488
95% CI: [0.047461,0.038485) °
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Figure 2: UDE versus physics baseline performance com-
parison. Scatter plot shows per-scenario RMSE for x2
(frequency deviation), demonstrating strong correlation
(r = 0.955, p < 0.001). Mean difference A = —0.004
with parametric 95% CI [—0.047,0.038] indicates no sys-
tematic bias. Orange line: perfect agreement; blue line:
fitted relationship with 95% confidence band (gray).

0.031] that contains zero, establishing statistical equiv-
alence at the o = 0.05 level (Fig. [{). Bland-Altman
analysis (Fig. |3) reveals no systematic bias across the
performance range, with 95% limits of agreement span-
ning [-0.107, 0.116]. Per-scenario results show mixed
deltas—some scenarios favor UDE slightly, others fa-
vor physics—consistent with statistical noise rather
than systematic differences. These findings establish
that UDE preserves physics-level point accuracy while
adding interpretability through learned corrections.

3.3 Symbolic Extraction and Interpretability

The UDE architecture enables post-hoc symbolic dis-
tillation through systematic evaluation of the learned
residual fg(Pgen). We interpret the residual as captur-
ing the main effect with respect to Pyen by evaluating
the network on a dense grid of generation values and
fitting polynomial models of increasing degree using
Bayesian Information Criterion for model selection.
The learned residual yields a quintic approximation
with near-perfect fidelity:

fo(Pgen) = 0.162 + 0.409 Pye,, — 0.070 P2

gen
—0.103P3_ +0.065P% —0.012P°

gen gen gen

(10)



Bland-Altman Analysis: Agreement Assessment
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Figure 3: Bland-Altman analysis showing agreement
between UDE and physics baseline. Mean difference
A = —0.004 (solid line) with 95% limits of agreement at
[-0.107, 0.116] (dashed lines). No systematic bias evident
across performance range.
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Figure 4: Bootstrap distribution (1,000 resamples) of
mean RMSE difference. Sample mean A = —0.004 with
95% CI [-0.039, 0.031] contains zero, confirming statistical
equivalence.

achieving R? = 0.9998 (Fig. [5). This symbolic form
demonstrates that the neural network has discovered
an interpretable, low-dimensional structure despite hav-
ing 11 trainable parameters. The alternating coeffi-
cient signs indicate complex oscillatory behavior in
generation-frequency coupling that would be difficult
to specify a priori from first principles—a nonlinear
correction that emerges naturally from data-driven
learning within the physics-constrained framework.

To validate that this 1D symbolic summary is suffi-
cient, we interpret the learned residual as a five-input
function 7(Pgen, Pload, T1, Z2,t) and compute the main
effect mp(p) = E[r(p, Poad, 1, T2,t)] under the em-
pirical joint distribution of other variables. Figure [6]
shows this main-effect curve is accurately captured by
the quintic (R? = 0.9998), providing an auditable sum-
mary of dominant residual variability. We additionally
inspect pairwise interaction slices (Fig. [7)); observed
interaction magnitudes are numerically small (interac-
tion < 1), supporting the near-additive structure with
respect to Pyep.

Symbolic Extraction via Polynomial Regression
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Figure 5: Symbolic extraction of learned residual. Neu-
ral network evaluations (blue points) captured by quintic
polynomial fit (orange curve) with R* = 0.9998. The
11-parameter neural network distills to 6 interpretable coef-
ficients revealing oscillatory generation-frequency coupling.

(a) Main-Effect Curve: Network Residual vs. Symbolic Quintic
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Figure 6: Main-effect extraction for Pgen. Empirical main-
effect curve (black) computed by marginalizing over other
system variables matches the fitted quintic (orange) with
R? =0.9998. This provides an auditable symbolic summary
of the dominant learned correction.

3.4 Computational Efficiency and Scalability

Table ] presents scalability analysis across dataset sizes.
BNODE exhibits consistently higher computational de-
mands: approximately 2.8 slower training, 2x higher
memory consumption, and quadratic complexity O(n?)
versus UDE’s O(nlogn) scaling. Both methods show
good parallel scaling efficiency (UDE: 2.3x; BNODE:
1.8x). Memory scales linearly with data: UDE requires
approximately 0.46 GB per 1K samples while BNODE
requires 0.94 GB per 1K samples.

Figure [§ shows inference times for both methods.
Physics baseline achieves 0.08 £ 0.01 ms per trajectory;
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Figure 7: Interaction surface for (Pyen, Pioad) showing
small departures from additivity (interaction magnitude
< 1), consistent with the main-effect-dominated structure
and validating the 1D symbolic summary.

Table 4: Scalability analysis: training time and memory
consumption by dataset size. Both methods scale sub-
quadratically, but BNODE consistently requires 2-3x more
resources.

Size UDE Time BNODE Time Ratio UDE Mem BNODE Mem
1K 15.2s 42.1s 2.77x 0.46 GB 0.94 GB
5K 45.2s 128.5s 2.84x 2.3 GB 4.7 GB
10K 98.7s 287.3s 2.91x 4.6 GB 9.4 GB
Parallel speedup 2.3% 1.8x — — —
Empirical scaling  O(nlogn) 0(n?) — — —
Inference Time Comparison
én
Figure 8: Inference time distributions showing both

physics baseline (0.08 + 0.01 ms) and UDE (0.27 £ 0.05
ms) maintain millisecond-scale performance suitable for
real-time microgrid control.

UDE requires 0.27 + 0.05 ms—a 3.4X increase that
remains well within real-time constraints for microgrid
control. Both methods are suitable for embedded de-
ployment in operational systems, while UDE offering
interpretability.

3.5 Bayesian Uncertainty Quantification

BNODE calibration via variance scaling improves em-
pirical coverage toward nominal levels at 90% while
leaving 50% coverage nearly unchanged. On test data,
coverage improves from 47.5% to 47.8% at the 50% nom-
inal level and from 86.6% to 89.3% at the 90% nominal
level using a = 0.5 with 100 posterior draws (Table [5).

Table 5: BNODE posterior-predictive calibration results
on test set using variance scaling with o = 0.5. Calibration
improves 90% coverage at modest likelihood cost.

Gauss NLL
post ‘ «

Coverage@50 Coverage@90
Model pre post pre post pre

0.866 0.893 339.99 347.18‘0.5

BNODE 0.475 0.478

Pre-calibration

Post-calibration (a = 0.5)

Figure 9: BNODE calibration effect on coverage distribu-
tions. Pre-calibration (left) shows 50% nominal coverage
at 47.5% and 90% at 86.6%. Post-calibration with oz = 0.5
(right) achieves 47.8% and 89.3%, bringing 90% coverage
closer to nominal.

UDE Test Trajectories with Conformal Prediction
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Figure 10: UDE test trajectories with conformal predic-
tion intervals. True values (black), predictions (blue), 50%
interval (dark band), 90% interval (light band). Empirical
coverage: 65.3% at 50% nominal, 86.8% at 90% nominal.

Gaussian-summary negative log-likelihood increases
from 339.99 to 347.18, illustrating the expected trade-
off: a single global scaling parameter nudges coverage
toward nominal rates but may not simultaneously op-
timize likelihood. This modest degradation (+2.1%) is
acceptable given the substantial improvement in 90%
coverage.

Figure[I0]shows UDE test trajectories with post-hoc
conformal prediction intervals. The calibrated UDE
achieves 65.3% coverage at 50% nominal and 86.8%
at 90% nominal, demonstrating that physics-informed
hybrid models can provide reasonable uncertainty esti-
mates through conformal methods despite being trained
deterministically.



4 DISCUSSION

4.1 Summary and Deployment Guidance

Our systematic comparison establishes that Universal
Differential Equations and Bayesian Neural ODEs rep-
resent complementary approaches for hybrid physics-
machine learning in dynamical systems. UDEs achieve
statistically equivalent point accuracy to physics base-
line (bootstrap 95% CI [-0.039, 0.031] contains zero,
p > 0.05) while enabling symbolic extraction of in-
terpretable corrections. The learned quintic in Pgen
achieves R? = 0.9998, distilling from 11 neural param-
eters to 6 interpretable polynomial coefficients that re-
veal complex oscillatory generation-frequency coupling.
UDEs demonstrate superior computational efficiency:
2.8x faster training, 2x lower memory consumption,
and O(nlogn) scaling versus BNODEs’ O(n?) MCMC
complexity.

BNODEs provide principled probabilistic uncer-
tainty quantification with calibrated prediction inter-
vals. Variance scaling calibration (o = 0.5) improves
90% coverage from 86.6% to 89.3% at modest neg-
ative log-likelihood cost (+2.1%). While BNODE
point accuracy is lower than UDEs (see Appendix ,
the method’s value lies in principled epistemic uncer-
tainty quantification rather than deterministic predic-
tion. Both methods maintain millisecond-scale infer-
ence suitable for real-time microgrid control (UDE:
0.27 £ 0.05 ms; physics: 0.08 £ 0.01 ms), well within
typical operational requirements of 4-100 ms for sec-
ondary and tertiary control layers.

These complementary strengths suggest deployment
strategies based on operational requirements. Choose
UDEs when: (1) structural preservation is paramount
for regulatory approval; (2) interpretability is required
for auditable corrections; (3) computational resources
are limited; (4) real-time performance is critical; or (5)
symbolic knowledge extraction is valuable. Choose BN-
ODEs when: (1) epistemic uncertainty quantification
is essential for decision-making; (2) novel operating
regimes require robust uncertainty estimates; (3) prob-
abilistic constraints are needed for chance-constrained
optimization; or (4) risk-aware planning requires cali-
brated forecasts.

4.2 Scope and Limitations

Our two-state model captures essential storage-
frequency coupling but omits dynamics critical to
real microgrids: voltage-current control loops, LCL
filter dynamics (6 states), phase-locked loops (2
states), PI controllers (4 states), current limiting,

protection logic, and electromagnetic transients.
Realistic inverter-based resource models require 13-24
states minimum. Extension to higher-dimensional
systems with comprehensive validation is essential for
operational deployment.

The sample size (n = 10 test scenarios) provides
preliminary evidence with limited statistical power.
Bootstrap confidence intervals likely underestimate un-
certainty at this scale, and we can detect only large
effects (Cohen’s d > 1.5). We evaluate only interpola-
tion; extrapolation robustness is untested. The learned
quintic exhibits unbounded growth for Pye, > 1.2, sug-
gesting domain restrictions may be necessary for safe
deployment.

Missing baseline comparisons limit contextualiza-
tion. Modern time-series methods (PatchTST), op-
erator learning approaches (FNOs, DeepONet), and
standard uncertainty quantification techniques (MC
Dropout, Deep Ensembles) would provide important
reference points. We lack domain validation against
industry-standard simulators (PSCAD, PowerFactory),
real microgrid telemetry, and hardware-in-the-loop test-
ing per IEEE 2030.8-2018 guidelines.

Calibration addresses only x5 (frequency deviation);
multivariate proper scoring rules would better assess
coupled predictions across both state variables. Our
BNODE implementation uses MCMC (NUTS) for pos-
terior inference; recent work suggests Laplace approx-
imation may provide faster, more consistent results
[43]. Validation on 30-50+ diverse scenarios with real
telemetry, hardware-in-the-loop testing, and system-
atic failure mode characterization is essential before
operational deployment.

4.3 Broader Impact

This comparison methodology extends beyond micro-
grids to other cyber-physical systems requiring real-
time control under uncertainty: chemical process con-
trol, robotics, aerospace systems, and autonomous ve-
hicles. The trade-off between interpretability (UDESs)
and calibrated uncertainty (BNODESs) represents a
fundamental choice in scientific machine learning for
safety-critical applications. Our work provides quan-
titative guidance for this choice based on operational
requirements, computational constraints, and deploy-
ment contexts.
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CHECKLIST

1. For all models and algorithms presented, check
if you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(¢) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Not Applicable]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Not Applicable]

(¢) Clear explanations of any assumptions.
[Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed
to reproduce the main experimental results
(either in the supplemental material or as a
URL). [Yes]

(b) All the training details (e.g., data splits,
hyperparameters, how they were chosen).
[Yes]

(¢) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastruc-
ture used. (e.g., type of GPUs, internal
cluster, or cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check
if you include:

(a) Citations of the creator If your work uses
existing assets. [Yes]
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(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental ma-
terial or as a URL, if applicable. [Not Ap-
plicable]

(d) Discussion of sensible content if applicable,
e.g., personally identifiable information or
offensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partic-
ipants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Applica-
ble]

(¢) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]

A BNODE POINT ACCURACY
METRICS

Table 6: BNODE point accuracy metrics. Posterior
mean predictor yields lower point accuracy than UDE,
but method provides calibrated probabilistic forecasts.

Model RMSEz; RMSEz: R2, R, MAEz; MAEz

BNODE 2.630 0.860 -3.710 -3.110 2.040 0.750

Table [6] presents BNODE point accuracy using the
posterior mean predictor. BNODEs are optimized
for calibrated uncertainty quantification rather than
point prediction; calibration adjusts prediction interval
dispersion but not mean trajectory. The negative R?
values indicate performance worse than a constant-
mean baseline, reflecting the method’s emphasis on
probabilistic forecasting over deterministic accuracy.
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